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ABSTRACT

Hardy, Littlewood and P61ya (1934) introduced the notion of one function

being convex with respect to a second function and developed some inequalities

concerning the means of the functions. We use this notion to establish a par-

tial order called convex-ordering among functions. In particular, the dis-

tribution functions encountered in many parametric families in reliability

theory are convex-ordered. We have formulated some inequalities which can

be used for testing whether a sample comes from F or G, when F and G

are within the same convex family. Performance characteristics of different

coherent structures can also be compared with respect to this partial ordering.

For example, we will show that the reliability of a k+l-out-of-n system is

convex with respect to the reliability of a k-out-of-n system.

When F is convex with respect to G, the tail of the distribution F

is heavier than that of G; therefore, our convex ordering implies stochastic

ordering. The ordering is also related to total positivity and monotone

likelihood ratio. families. This provides us a tool to obtain some useful

results in reliability and mathematical statistics.
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1. Introduction.

For any distribution function F, we define the inverse of F by

F (t) = inf(x: F(x) z t).

Several notions of partial ordering among life distributions have been

established earlier by various authors. Van Zwet (1964) introduced the

notion: F is convex-ordered with respect to G if G'F is convex on the

support of F. The basis of this ordering between distribution functions,

and hence between random variables, is that one random variable can be

expressed as a convex transformation of another random variable. Barlow

and Proschan (1966) have derived tolerance limits for the distributions which

are ordered in the sense of Van Zwet.

In 1981, Larry Lee defined and analyzed the following notion of convex

ordering: F is convex-hazard ordered with respect to G, written

F < G if R-1' is convex, where RF = -log F is the hazard function

of survival function F a I-F. Lee used this convexity property to general-

ize certain inequalities and preservation theorems in reliability. We

define the following notion of convex ordering, which is different from

those of Van Zwet (1964) or Lee (1981).

1.1 Definition. For any distributions F and G, we say that F is more

c
convex than G written F > G, if FG 1  is a convex function in the in-

terval [0,I].

The notion we propose here permits one distribution function to be

expressed as a convex transformation of another distribution function.

E.g., x3 is more convex than x2 on the interval [0,I]. This concept

coincides with that of Hardy, Littlewood and P61ya (1934, p.65). Although
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the above definition of this ordering applies to the class of all monotonic

functions, we shall restrict our attention mainly to life distributions.

Note that in the class of increasing functions, a necessary and sufficient

c
condition that f be convex is that f > g for some convex function g.

A very useful way to characterize this convex ordering using the den-

sities of the distributions is given in the following theorem.

1.2. Theorem. Let the distribution functions F and G be absolutely

c
continuous with densities f and g. In order that F > G, it is necessary

and sufficient that f be increasing.
g

-1 -l
Proof. FG"  is convex if and only if its derivative fG-(t) is increasing

gG-l(t
in t. By noting that G is an increasing function, we obtain the

conclusion.1J

Using this result, we easily see that this convex ordering represents

a partial ordering on the class of distributions with continuous densities.

Specifically, convex ordering has the following properties:

c
(a) Reflexive: F > F.

c c c
(b) Transitive: F > G and G > H imply F > H.

c c
(c) Antisymmetric: F > G and G : F imply F G.

We now define the notion of a convex-ordered family.

1.3. Definition. A family of distributions (Fa is said to be a convex-

ordered family, or simply a convex family if F > F for a2 
>

02

The following families of distributions are ccnvex ordered with

respect to a for a > 0.

~LA
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Examples

M -t/x
(1) Exponential - FaCt) - l-e , t > 0.

(2) Gamma -F~t M ~~ x 4 e- dx, t > 0.

(3) Truncated Normal - F (t) 1 (X-)220 dx for t > 0,a r2-wJo

where 4r,> 0 is fixed and a = fe - (X -) 2 /2 0 2 dX.

(4) Weibull - F (t) a l-e " t/G) for t > 0, where I > 0 is fixed.

- R(t)
(5) Proportional hazards - F Ct) = -, t 0 0, where

R(t) u -log F(t) is the hazard function of some life distribution F.

The theory of total positivity has been used to obtain many new results

in reliability and life testing. In studying convex families, we can also

make use of this powerful tool. The main results of total positivity can

be found in Karlin (1968).

1.4. Definition. A nonnegative function f9(x) on R x R is totally

positive of order 2 (TP2) in (a,x) if

f C9(x) fa (x2)

f(x)I f a x2)
1 2

for all aI < I2 and x1 < x2  (also called the monotone likelihood ratio

property.)

The next theorem relates total positivity to convex ordering.

I.5. Theorem. (F a  is a convex family if and only if the corresponding

density f (t) is TP2 in (a,t).
IP2

* . * . . . . .

.1 *



C
Proof. By Theorem 1.2, we have that F. > F for a 2 > aI if and only if
f2 f a ( t t) f (t 2 )

is increasing. Thus for a2 > 0A t 2  1 f Ctl) af-It ) 0,
01 0 1 2 2

which is the defining condition that fa(t) is TP 2  in (at).II

An immediate consequence of this theorem is the following corollary.

1.6. Corollary. If (F I is a convex family, then F (t) is TP 2 in

(at).

Proof. By Theorem I.5, f(x) is TP2 in (,x).

It follows from the basic composition formula of P61ya and Szego (192S)

that

Fa(t) = f (x) dx is TP 2 in (a,t).I

Another ckaracterization of convex ordering is given by

1.7. Theorem. P > G if and only if S > P.

Proof. Taking the derivative of UP-1, we can see that

> iff is increasing in t
fP (t)

iff is decreasing [since 'l(t) is decreasing in t]f

iff F G by Theorem 1.2.II

We end this section with the following comparisons of our convex

ordering and those of Van Zwet and Lee. We note that the Weibull family

is not convex ordered according to the shape parameter A, but it is

convex ordered in the sense of Van Zwet. Let Fl(t) _ t2 on the interval

[0,1] and F2 (t) * 1-11it7 on the same interval. Then F2  is more convex

)]l" -.,:L.,.5"i:.,- _ i-/: ... ... ... . . .,- . .I l . ll m I lli~ l I ll~lid ' I
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1

than F1. Since FIlFs2(t) (1 - ,t7) " is not convex, F2 is not convex-

ordered with respect to F1.

One way to describe F more convex than G, is to say that the tail of

distribution F is heavier than that of distribution G. Suppose F and

G are the distribution functions of the random variables X and Y. Then

F
by Corollary 1.6, U is an increasing function. Hence F(x) S G(x) holds

for each x, the defining condition for x to be stochastically larger than

Y. Thus convex ordering implies stochastic ordering. Next, we will showc f

that F c G also implies that the hazard rate rF = - of F is less than

that of G. Comparing this result with the convex-hazard order of Lee (1981),
rF

which requires that F be an increasing function of t, we see that neither
rG

notion of convex ordering implies the other.

C
1.8. Corollary. If F > G, then rF(t) < rG(t) for all t.

Proof. By Theorem 1.S, f(tl)g(t) s f(t)g(t), for all tI s t. Integrating

this over (tl,-), we have

f(tQ)d(tl) i P(tl)g(t1 ) for all t1 .II

2. Presevatien of Convex OrdriMnynder Cperations.

In this section, we show that our notion of convexity is preserved

under various standard statistical operations.

First, we show that convex ordering is preserved under mixture of

distributions.

2.1. Theorem. If FG G for each a, then fFadp(a) > G for any mixing

distribution P.
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f L f 01du (a)
Proof. By Theorem 1.2, -1 is increasing for each a. Thus

" .
is an increasing function.

Again by Theorem 1.2, we have IF d.a() S G.II

A similar proof holds for

2.2. Theorem. If F Ga for each a, then F > fGadvCa) for any mixing

distribution v.

From Theorems 2.1 and 2.2, we have

2.3. Theorem. If F G for each pair (a,$), then JF du(m) >c JGadv(B)

for any mixing distributions u and v.

It should be noted that the condition in Theorem 2.3 cannot be weakened

to F a G for each a, as shown in the following example.o a a

2.4. Example.

Let Ml-t)1.1

2 t) e-t/S1

t
t

t

f(t) e ,

2 (t) e1t/5
7.Then F G and F G Define t flt) n h2t) where

F1 c G1  F2 2 G2" gl(t) + 92(t)

f and gi denote the respective densities of Fi and Gi .

In particular, h(4.6) * 1.04 > 1.026 * h(6). By Theorem 1.2,

-(F1 + F2 ) 5 {G1 + G2) is shown to be false.

Next, we show that convex ordering is preserved under formation of

parallel systems of independent components. We begin with some basic defi-

nitions and notation from reliability.
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Consider n independent components, each of which is either functioning
or not. We use the binary variable xi  to indicate the state of the ith

component:

1 if component i is functioningotherwise.

The state of a system composed of these components is determined by the

states of the components. The function *(x1 , ..., xn) is called the

structure function of the system and is defined by

I if system is functioning,
n= 0 otherwise.

Example. A k-out-of-n system functions if and only if at least k out of

the n components function. The structure function is given by

I if in ax)=i=l i.>k

1' 0 otherwise.

The ith component is irrelevant to the structure * if * is constant

in xi. We consider monotone systems, that is, systems for which

WIN ... , xn ) k *(y1, .. , yn) whenever xi 2 Yi for all i = 1, ..., n.

If a monotone system has no irrelevant components, it is said to be a coherent

system.

Let P(X1 = 1) Pi denote the reliability of the ith component; the

system reliability is given by

h ... , X) ).

1thDenote the life distribution of the i component by Fi; then the life

distribution F of the system is given by

F (t) - 1 - hC l(t). * nt)

.n
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As a special case, we will consider a parallel structure of n compo-

nents, i.e., a I-out-of-n system. The life distribution of the system is

given by the product , i=l Fi(t). The following theorem shows that convex

ordering is preserved under formation of parallel systems.

C
2.5. Theorem. Suppose F. > G. for each pair (i,j). Then1 j

1n F Hin
i- i i=l Gi"

Proof. It suffices to prove the theorem for n = 2. By Theorems 1.2 and
f. F.

1.6, for each i and j, are increasing functions. Thus
gj ' Gj

fF 2  + f 2F1
g is increasing. Again, by Theorem 1.2, we have proved thegiG2 + 2G1

result F F2  G1G• I1

When all components are identical, the following theorem shows among

other results, the reliability of a k-out-of-n system is more convex than

the reliability of a (k-l)-out-of-n system.

2.6. Theorem. Let hnk(p) be the reliability function of a k-out-of-n

system with identical components. Then hn,kl > hnl,k l > hn,k >hn ,k"

Proof.

[)_jn (n) i (, n-i
hkCP =k i -p)

= r(n}+l /P t k'l (lt)n-k dt

when written as the incomplete Beta function. Taking the derivative of

hn,k ,we have
n! k-i -

hn.- ) = 3-T",)!( Tl) p  (l-p)n'

* .. . ...- - ... , , % ,o o - . % ~ " . . " , " •, " - . . , ., * -. -j - • " . . .
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and so,

hn,k(P) n-k+l 1
n+l,k n+l 1-p

C
is increasing in p, establishing that h > h The remaining in-

n ,k n~lk.Threangi-

equalities can be proved similarly.1j

th
Since the distribution of the k order statistic corresponds to the

life distribution of a k-out-of-n system of identical components, the follow-

ing corollary is essentially a restatement of Theorem 2.6.

th
2.7. Corollary. Let Fnk be the distribution of the k order statistic

c c cin a sample of size n from F. Then F > F > Fn > F
n,k~l n,1,k+l n,k n~l,k

A series structure functions if and only if each component functions;

i.e., it is a n-out-of-n system. We now show that convex ordering is pre-

served under formation of series systems with independent components. More

generally, we prove the following theorem.

2.8. Theorem. For a k-out-of-n system of independent components, let F1

denote the distribution of the ith component. If F. c G. for each pair

of (ij), then F > G

Proof. For a k-out-of-n system, the density is

1 F ... F
"(k-l)! (n-k)! - 12 k k+1 n

where the sumnation is taken over all permutations of the integers 1,2, .. ,, n.

From Corollary 1.8, Figj a fiG for each pair of (ij), hence - is an
C.f_ 3

increasing function. Theorems 1.2 and 1.6 then imply that nk is increasing.
gn,k

Again by Theorem 1.2, we conclude that F > Gn,k

n n"
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In view of Theorems 2.5 and 2.8, one might ask whether convex ordering

is preserved under formation of coherent systems. The cxample below shows

that this is not true in general.

Example. Consider the coherent structure of identical components presented

in the following diagram.

The survival distribution of this system is

f. P3 (2 - P)

Fo--t2t c
For F(t) =et and (t) =e we have F 5 G; but

f (t) eSt -t -t
g__- = (2-e) (6-Se)

is not increasing in t.

In order to show that convex ordering is preserved under convolution,

we need to consider the class of P6lya frequency densities of order 2 (PF2).

2.9. Definition. f is a P61ya frequency function of order 2 (PF2) if for

all A > 0, f(X+A)/f(x) is decreasing in x, -< x ' m.

An equivalent definition is that log fkx) is concave. Note that each

PF2 Junction f(x) defines a TP2  function, h(o,y) = fix-y).

The following theorem, due to Ghurye and Wallace (1959), gives a suf-

ficient condition on convex families for preservation of convexity under

convolution.
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2.10. Theorem. Let (F and {G ) be convex families with PF2 densities.

Then (F * G0) is a convex family.

Denote the n-fold convolution of F by F(n). Then for life distribution F

with log concavw density, F(n+l } is nore convex than F This is a

special case of Theorem I in Karlin-Proschan (1960).

2.11. Theorem. Let F be a life distribution with PF2 density, then

(F(n)} is a convex family.

3. Application of convex ordering.

Very often in life testing, we do not know the exact form of the distri-

bution, but based on physical evidence, we know something about the proper-

ties of the distribution. For example, in situations where a normal distri-

bution is assumed, we might suspect that the tail of the underlying distri-

bution is, in fact, heavier than that of the normal distribution. Therefore

we want to test the normal assumption against convex ordered alternatives.

In this section, we will present an inequality for convex families and apply

this inequality to develop tests of such a hypothesis.

3.1. Theorem. (Hardy, Littlewood and P61ya, p.75.) F > G if and only if

F'(jil~iFxi)) t G L(JinliG(xi)) for all xi and Ai 2 0, i = 1, ... , n,

such that jinli . 1.

Note that JinlAiF(xi) is a weighted average. We now apply this result

to hypothesis testing.

3.2. Application. Let X , . X be a random sample. Suppose we wish
n

to test:

H: X1 S ... , Xn "G (known)

n.
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against the alternative

Hi: X, ..., X F, F > C but otherwise unknown.
1' n

Then under Hi. G (Ini-- G(Xi)) F- (nil F(Xi)).

Since F(X) is uniformly distributed on [0,1], ni-IF(Xi) is the

sample mean of a uniform random variable on [0,I], and thus can be estimated

by In this case F is an unknown distribution, but the empirical distri-

bution Fn  can be computed from (X, ..., Xn). Our test procedure is to

reject H if G" n G(Xi is sufficiently smaller than F 1 1

Recall that G is known.

4. Convex ordering for symetric distribution functions.

In this section, we consider convex orderings between symmetric distri-

bution functions: P(x) a F(-x) for all x.

4.1. Definition. F s>C G if F and G are symmetric distribution functions

and F > G on [0,- ) , i.e., FG"1 is concave-convex about the origin.

Examples of such ordered distributions are:

1) Normal.

Let F be the distribution function of N(O,a2), a > 0.0

sc
Then a2 >a I  F .

02 01

2) Double exponential.

Let f be the density function given by0

aI 2o

~ 02>1* F scFThen a 2 >a I s F > F

A ca 0a2 f1
4 A characterization of this ordering is given in the next theorem.
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sc
4.2. Theorem. F > G if and only if - is increasing in Itj.g

f.Proof. By Theorem 1.2, - is increasing on (0,-) and decreasing on
g

scf
Thus, if we wish to show F c G, we need only to consider - on the

g

positive axis. As an immediate consequence of this and Theorem 2.3, we have:

Sc
4.3. Theorem. Let F G a for each pair of (a,$). Then

FaFdu(m) sc fG dv(0) for any mixing distributions v and v

Since the product of symmetric distribution functions need not be

symetric, we do not have a result analogous to Theorem 2.5. It can also

be shown that this ordering is not necessarily preserved under convolution.

If F c G, then we can show that the even central moments of F are

greater than those of G . To prove this we need the following result.

4.4. Lemma. (Barlow and Proschan, 1975, p. 120.)

Let W(x) be a Lebesgue-Stieltjes measure, not necessarily positive

for which f; dW(x) a 0 for all t, and let h k 0 be increasing. Then

f.aO h(x)dW(x) k 0.

4.5. Theorem. F s>c G i 2n(F) a U2n(G) for all n.

Proof. F > G o F(t) s G(t) t 2 o.

LetF(x) -G(X) if x 2 0
{t= 0 otherwise,

x n  if k z- 0

and h(x) * f
n 0 otherwise.

Then by Lemma 4.4, u2n(F) a 2

2n2
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4.6. Corollary. If F c , then Var F a Var G.

When F is more convex than G , G is more peaked about the origin

than F. We now compare this notion of relative peakedness to the following

definition given by Birnbaum (1948).

4.7. Definition. Y is more peaked than X if

P(lYl a t) : P(IXl t) for all t a 0

If X(Y) has a symmetric distribution function F(G) , this is equivalent

to G(t) 2 F(t) for all t a 0

4.8. Theorem. If F c G then G is more peaked than F.

Proof. Following the proof of Corollary 1.6, we have
1F~t)- 1
+ in t for t a 0

1
(t) -1

At , the limit is 1 and we have F(t) : G(t) for all t a 0.11

We conclude this section with the following theorem.

4.9. Theorem. Suppose F Vc G and F is unimodal. Then G is unimodal.

Proof. Both f and f are nonnegative and decreasing on [0,-); thus g

is decreasing on [0,-).iI

I.

"o
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